首页> 外文OA文献 >Active patterning and asymmetric transport in a model actomyosin network
【2h】

Active patterning and asymmetric transport in a model actomyosin network

机译:模型肌动蛋白网络中的主动模式和不对称传输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cytoskeletal networks, which are essentially motor-filament assemblies, playa major role in many developmental processes involving structural remodelingand shape changes. These are achieved by nonequilibrium self-organizationprocesses that generate functional patterns and drive intracellular transport.We construct a minimal physical model that incorporates the coupling betweennonlinear elastic responses of individual filaments and force-dependent motoraction. By performing stochastic simulations we show that the interplay ofmotor processes, described as driving anti-correlated motion of the networkvertices, and the network connectivity, which determines the percolationcharacter of the structure, can indeed capture the dynamical and structuralcooperativity which gives rise to diverse patterns observed experimentally. Thebuckling instability of individual filaments is found to play a key role inlocalizing collapse events due to local force imbalance. Motor-drivenbuckling-induced node aggregation provides a dynamic mechanism that stabilizesthe two dimensional patterns below the apparent static percolation limit.Coordinated motor action is also shown to suppress random thermal noise onlarge time scales, the two dimensional configuration that the system startswith thus remaining planar during the structural development. By carrying outsimilar simulations on a three dimensional anchored network, we find that themyosin-driven isotropic contraction of a well-connected actin network, whencombined with mechanical anchoring that confers directionality to thecollective motion, may represent a novel mechanism of intracellular transport,as revealed by chromosome translocation in the starfish oocyte.
机译:细胞骨架网络本质上是运动丝组件,在涉及结构重塑和形状变化的许多发展过程中起着重要作用。这些是通过产生功能模式并驱动细胞内转运的非平衡自组织过程实现的。我们构建了一个最小的物理模型,该模型包含了单个细丝的非线性弹性响应与力依赖的运动之间的耦合。通过执行随机模拟,我们发现运动过程的相互作用(被描述为驱动网络顶点的反相关运动)和网络连通性(确定了结构的渗滤特性)确实可以捕获动态和结构合作性,从而产生了观察到的多种模式实验上。发现由于局部力不平衡,单个细丝的屈曲不稳定性在局部崩溃事件中起关键作用。电机驱动的屈曲引起的节点聚集提供了一种将二维模式稳定在表观静态渗流极限以下的动态机制,还显示了协调的电机动作可以在较大的时间尺度上抑制随机的热噪声,系统在启动时的二维配置因此在整个过程中保持平面结构发展。通过在三维锚固网络上进行类似的模拟,我们发现,良好连接的肌动蛋白网络的肌球蛋白驱动的各向同性收缩,与赋予集体运动方向性的机械锚固结合,可能代表了一种新型的细胞内转运机制,海星卵母细胞中的染色体易位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号